已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t为常数,且t≠0,t≠1).(1)求{an}的通项公式;(2

2025-05-09 05:36:59
推荐回答(1个)
回答1:

(1)当n=1时,S1=t(S1-a1+1),得a1=1.
当n≥2时,由Sn=t(Sn-an+1),
即(1-t)Sn=-tan+t,①
得,(1-t)Sn-1=-tan-1+t,②
①-②,得(1-t)an=-tan+tan-1
即an=tan-1

an
an?1
=t(n≥2),
∴{an}是等比数列,且公比是t,
antn
(2)由(1)知,bn=(tn)2+
t(1?tn)
1?t
?tn

bn
t2n+tn+1?2t2n+1
1?t

若数列{bn}为等比数列,
则有
b
b1?b3

b1=2t2
b
t3(2t+1),b3t4(2t2+t+1)

故[a3(2t+1)]2=(2a2)?a4(2t2+t+1),
解得t=
1
2

再将t=
1
2
代入bn,得bn=(
1
2
)n

b n+1
b n
1
2
,知{bn}为等比数列,
∴t=
1
2

(3)由t=
1
2
,知an=(
1
2
)n

cn=4(
1
2
)n+1

Tn=4×
1
2
(1?
1
2