(1)当n=1时,S1=t(S1-a1+1),得a1=1.
当n≥2时,由Sn=t(Sn-an+1),
即(1-t)Sn=-tan+t,①
得,(1-t)Sn-1=-tan-1+t,②
①-②,得(1-t)an=-tan+tan-1,
即an=tan-1,
∴
=t(n≥2),an an?1
∴{an}是等比数列,且公比是t,
∴an=tn.
(2)由(1)知,bn=(tn)2+
?tn,t(1?tn) 1?t
即bn=
,
t2n+tn+1?2t2n+1
1?t
若数列{bn}为等比数列,
则有
=b1?b3,
b
而b1=2t2,
=t3(2t+1),b3=t4(2t2+t+1),
b
故[a3(2t+1)]2=(2a2)?a4(2t2+t+1),
解得t=
,1 2
再将t=
代入bn,得bn=(1 2
)n,1 2
由
=b n+1
b n
,知{bn}为等比数列,1 2
∴t=
.1 2
(3)由t=
,知an=(1 2
)n,1 2
∴cn=4(
)n+1,1 2
∴Tn=4×
(1?1 2
1 2