(2014?唐山三模)在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1

2025-05-09 05:11:47
推荐回答(1个)
回答1:

(1)∵平面A1ACC1⊥平面ABC,AC⊥BC,
∴BC⊥平面A1ACC1
∴A1A⊥BC,
∵A1B⊥C1C,A1A∥CC1
∴A1A⊥A1B,
∴A1A⊥平面A1BC,
∴A1A⊥A1C;
(Ⅱ)建立如图所示的坐标系C-xyz.
设AC=BC=2,
∵A1A=A1C,
则A(2,0,0),B(0,2,0),A1(1,0,1),C(0,0,0).

CB
=(0,2,0),
CA1
=(1,0,1),
A1B1
=
AB
=(-2,2,0).
n1
=(a,b,c)为面BA1C的一个法向量,则
n1
?
CB
=
n1
?
CA1
=0,
2b=0
a+c=0
取a=1,
n1
=(1,0,-1).
同理,面A1CB1的一个法向量为
n2
=(1,1,-1).
∴cos<
n1
n2
>=
n1
?
n2
n1
 
n2
 
=
6
3