由向量a=(√3sinx,cosx),向量b=(cosx,cosx)f(x)=ab=√3sinx×cosx+cos²x∴f(π/2)=√3sin(π/2)cos(π/2)+cos²(π/2)=0.
f(x)=a向量乘以b向量=√3sinxcosx+cos²x=(√3/2)sin2x+(1/2)cos2x+1/2=sin(2x+π/6)f(π/2)=sin(π+π/6)=-sin(π/6)=-1/2希望能帮到你,(⊙ o ⊙ )谢谢!