(1)证明:∵PA⊥平面ABCD,AC在平面ABCD内,∴AC⊥PA
又AC⊥AB,PA∩AB=A,∴AC⊥平面PAB(2分)
又PB在平面PAB内,∴AC⊥PB(4分)
(2)证明:连结BD,与AC相交于O,连结EO
∵ABCD是平行四边形,∴O是BD的中点(5分)
又E为PD中点,∴PB∥EO(6分)
又PB在平面AEC外,EO在AEC平面内,∴PB∥平面AEC(8分)
(3)解:过O作FG∥AB,交AD于F,交BC于G,则F为AD中点
∵AB⊥AC,∴OG⊥AC
又由 (1)(2)知,AC⊥PB,EO∥PB,
∴AC⊥EO(10分)
∴∠EOG是二面角E-AC-B的平面角
连结EF,在△EFO中,FO=
AB1 2
又PA=AB,EF⊥FO,∴∠EOF=45°
∴∠EOG=135°,即二面角E-AC-B的大小为135°.(12分)